Synthesis and structure of $Li_3Ba_2TaN_4$

X.Z. Chen, D.L. Ward and H.A. Eick*

Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824-1322 (USA)

(Received September 27, 1993; in final form October 15, 1993)

Abstract

A new quaternary nitride, Li₃Ba₂TaN₄, has been synthesized from Li, Ba and Ta metals under flowing N₂ at high temperature. The structure, as determined by single crystal X-ray diffraction techniques, is monoclinic, space group *C*2/*c*, *Z*=4, with lattice parameters $a = 11.294(2)$ Å, $b = 5.678(1)$ Å, $c = 11.350(2)$ Å, and $\beta = 121.407(7)$ °. Refinement based upon F^2 yielded R2=0.052 and wR2=0.074 (for comparison, a refinement based upon F yielded $R1 = 0.032$). The Ta and one of the two independent Li ions are tetrahedrally coordinated by N anions; the Li tetrahedra are distorted. By sharing edges, the Ta and Li tetrahedra form chains which are linked together by the remaining Li ions to form the three-dimensional structure.

1. Introduction

Transition metal ternary and quaternary nitrides have received an increased level of attention recently and represent new materials with potentially interesting magnetic and electronic properties [1]. Some of the numerous transition metal-containing ternary nitrides that have been reported include Ca_3CrN_3 [2], Ca_3VN_3 [3], M_3 FeN₃ ($M \equiv$ Ba, Sr) [4], M_3 MnN₃ ($M \equiv$ Ba, Sr) [5], all of which have trigonal planar $[M^{III}N₃]$ ⁶⁻ anions with either $C_{2\nu}$ (nitridovanadate(III) and nitridochromate(III)) or D_{3h} symmetries (nitridoferrate(III) and nitridomanganate(III)). Other transition metalcontaining nitrides reported recently include $Fe₃Mo₃N$ [6], FeWN₂ [7], Ba₃ MN_4 ($M \equiv$ Mo, W) [8], and Ca₂ZnN₂ [9]. Several Ta-containing ternary nitrides in which Ta is either tetrahedrally or octahedrally coordinated by N atoms have also been reported: M_2 TaN₃ ($M = Ba$, Sr) [10], Li_7TaN_4 [11], $ATaN_2$ ($A =$ alkali metals) [12], and $CuTaN₂$ [13]. Very few transition metal-containing quaternary nitrides have been reported. A number of those reported involve the $Li-M-Ni-N$ systems, where $M = Ca$, Sr and Ba [14]. In LiSr₂CoN₂ [15] and M_2 LiFe₂N₃ ($M \equiv$ Ba, Sr) [16] the $[Co^TN₂]^{5-}$ and $[Fe₂N₃]$ ⁵⁻ anions, respectively, were characterized. We report the synthesis and structure of a new quaternary nitride $Li₃Ba₂TaN₄$.

2. Experimental details

2.1. Synthesis

A 2:1:1 molar ratio mixture of elemental Li, Ba (99.7%, Cerac), and Ta powder $(>99.5\%, 325 \text{ mesh},$ Fansteel Metallurgical Corporation) was confined in a Ta boat which was then placed in a quartz reaction tube. The mixture was first heated under flowing Ar (AGA Gas, Inc.) to 860 °C at a rate of 91 °C h⁻¹, held at this temperature under flowing nitrogen (AGA Gas, Inc.) for 34 h, and then cooled to 150 °C under Ar at a rate of 11.5 $^{\circ}$ C h⁻¹. Pale yellow single crystals of $Li_3Ba_2TaN_4$ were isolated from the crushed product which was both air- and moisture-sensitive. Both the Ar and N_2 gases were purified by molecular sieves (4-8) mesh, Aldrich) and De-Ox catalyst (Johnson Matthey). Typical moisture and oxygen contents of the gases were <0.5 p.p.m. and <1 p.p.m., respectively.

2.2. Structure determination

An irregular crystal of approximate dimensions $0.09 \times 0.10 \times 0.14$ mm³ was selected and sealed in a 0.2 mm glass capillary in an N_2 -filled glove bag. All measurements were made on a Rigaku AFC6S 4 circle diffractometer with graphite monochromated Mo K_{α} radiation ($\lambda = 0.710\,69$ Å). Lattice parameters were obtained from a least-squares refinement by using the angle settings of 19 carefully centered reflections in the range $38.60^{\circ} < 20 < 39.70^{\circ}$. Based on the systematic absences $(h0l \neq 2n)$, all off which were checked, and *hkl*, $h + k \neq 2n$, a few of which were checked), packing considerations, and the successful solution and refinement

^{*}Author to whom correspondence should be addressed.

 $^{\rm a}I\!>\!0.00\sigma(I).$ ${}^{b}R2 = \sum [F_{o}^{2} - F_{c}^{2}]/\sum F_{o}^{2}$. $\epsilon_{W}R2 = [\sum_{\alpha}^{\infty} (w|F_{\alpha}^{2} - F_{\alpha}^{2}])^{2} / \sum_{\alpha}^{\infty} (wF_{\alpha}^{2})^{2}]^{1/2}.$

TABLE 2. Atomic positions and B (eq) for $Li_3Ba_2TaN_4$

Atom	x	ν	z	B (eq)
Ta	0	0.11256(7)	0.25	0.24(1)
Ba	0.20933(4)	$-0.03379(8)$	0.11183(4)	0.64(1)
N(1)	0.1648(6)	$-0.090(1)$	0.3376(6)	0.8(2)
N(2)	0.0013(7)	0.312(1)	0.1116(7)	1.0(2)
Li(1)	0	$-0.362(4)$	0.25	2.4(8)
Li(2)	0.385(2)	$-0.044(3)$	0.459(2)	1.8(5)

The equivalent isotropie temperature factor is defined as [25]:

$$
B(\text{eq}) = \frac{8\pi^2}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a_i^* a_j^* \vec{a}_i \cdot \vec{a}_j
$$

of the structure, the space group was determined to be *C2/c* (#15). Data were collected at 25 ± 1 °C by the ω -2 θ scan technique to a maximum 2 θ value of 80°. Of the 1830 reflections which were collected, 1759 were unique. The intensities of three representative reflections that were measured after every 150 reflections declined by 0.70%. The linear absorption coefficient for Mo K α radiation is 298.1 cm⁻¹. An empirical absorption correction, based upon a PSI-scan, was applied and resulted in transmission factors that ranged from 0.76 to 1.00. The data were corrected for Lorentz and polarization effects. A correction for secondary extinction was applied (coefficient = $0.83 \pm 0.02 \times 10^{-6}$).

The structure was solved by direct methods with the programs MITHRIL [17] and DIRDIF [18]. All atoms were refined anisotropically with the refinement based upon $F²$. The final cycle of full-matrix least-squares refinement [19], which was based on 1644 observed reflections $(I>0.00\sigma(I))$ and 48 variable parameters, converged with unweighted and weighted agreement factors of:

$$
R2 = \sum |F_o^2 - F_c^2| / \sum F_o^2 = 0.052
$$

wR2 = $[\sum (w|F_o^2 - F_c^2])^2 / \sum (wF_o^2)^2]^{1/2} = 0.074$

For comparison, a refinement of the overall scale factor on F with the final parameters and 1455 observed reflections $(I>3\sigma(I))$ led to

$$
R1 = \sum |F_{\rm o}| - |F_{\rm c}| / \sum |F_{\rm o}| = 0.032
$$

The maximum and minimum peaks on the final difference Fourier map corresponded to 3.45 and -3.27 e \AA^{-3} , respectively. The major residue peaks are near to either Ta or Ba atoms and do not indicate any missed atoms.

Neutral atom scattering factors were taken from Cromer and Waber [20]. Anomalous dispersion effects were included in F_c ; values for $\Delta f'$ and $\Delta f''$ were from Cromer [21]. All calculations were performed using the TEXSAN [22] crystallographic software package. Data collection and atomic positional parameters are listed in Tables 1 and 2, respectively. Thermal parameters (U_{ii}) are listed in Table 3.

3. Results and discussion

In the crystal structure of $Li_3Ba_2TaN_4$ (Fig. 1), Ta^{5+} and Li(1) ions are tetrahedrally coordinated by N ions. The Li tetrahedra are distorted (see bond lengths below). These Ta and Li tetrahedra are joined by sharing edges to form parallel chains along b . These chains are then linked together by Li(2) ions to form a three-dimensional network. In $Ba₂TaN₃$ [10] the Ta tetrahedra are connected to each other by sharing one apex. The $Ta-N(1)$ and $Ta-N(2)$ bond lengths in $Li_3Ba_2TaN_4$ are 1.962(6) Å and 1.942(7) Å, respectively, very close to Ta-N bond lengths in $Ba₂TaN₃$ (1.922, 1.950, 1.966 and 1.988 Å) and in Li₇TaN₄ (1.964 Å). A list of selected bond distances and angles is given in Table 4. The average Ta-N length observed here is equal to the average Nb-N bond lengths found in $Li₇NbN₄$ [23], where Nb is also tetrahedrally coordinated by N ions. These comparable distances suggest that Nb and Ta should form similar nitrides with the same or similar structure types.

TABLE 3. Anisotropic thermal parameters, U_{ij} , for Li₃Ba₂TaN₄

Atom	$\mathit{U}11$	U22	U33	U12	U13	U23
Ta	0.0026(1)	0.0016(1)	0.0047(1)		0.0017(1)	0
Ba	0.0069(2)	0.0079(2)	0.0086(2)	0.0002(1)	0.0035(1)	$-0.0006(1)$
N(1)	0.006(2)	0.009(3)	0.011(2)	0.004(2)	0.001(2)	0.000(2)
N(2)	0.013(3)	0.013(3)	0.013(3)	$-0.006(2)$	0.006(2)	0.002(2)
Li(1)	0.02(1)	0.00(1)	0.04(2)		0.00(1)	0
Li(2)	0.014(7)	0.011(7)	0.030(9)	$-0.001(6)$	0.002(6)	$-0.011(7)$

The anisotropic temperature factor coefficients U_{ij} are defined as:

 $\exp(-2\pi^2(a^{*2}U_{11}h^2+b^{*2}U_{22}k^2+c^{-2}U_{33}l^2+2a^{*}b^{*}U_{12}hk+2a^{*}c^{*}U_{13}hl+2b^{*}c^{*}U_{23}kl)).$

• Ta \circ Ba \circ N(1) \circ N(2) \circ Li(1) \circ Li(2)

Fig. 1. A view of $Li_3Ba_2TaN_4$ down the b axis. The Ta and $Li(1)$ atoms are tetrahedrally coordinated by N atoms. The tetrahedra are joined to form chains that are linked together by Li(2) atoms to form a three-dimensional structure.

There are two kinds of Li ions in the structure, $Li(1)$ and $Li(2)$. $Li(1)$ ions are tetrahedrally coordinated by N^{3-} ions in a distorted arrangement. The Li(1) and Ta tetrahedra share edges to form $Ta-Li(1)-Ta-Li(1)$ chains. The Ta-Li(1) chain lies on a twofold axis. The Li(1)-N(1) and Li(1)-N(2) bond lengths are $2.21(2)$ and 2.43(2) Å, respectively, indicative that the Li tetrahedra are distorted. The Li(2) ions bridge three N^3 ions and, therefore, each Li(2) ion links three Ta-Li(1) chains (Fig. 1). The $Li(2)-N$ distances, $Li(2)-N(1)$ at 2.14(2) Å, and Li(2)-N(2) at 2.01(2) and 2.03(2) Å, are comparable to those in $Li₃N$ [24]: 1.938 (twofold coordinated Li) and 2.106 Å (threefold coordinated Li), respectively. If the Li(2)-N(1) bond (perpendicular to the *bc* plane) is not considered, a layered fragment can be viewed in the *be* plane as shown in Fig. 2.

Figure 2 also shows the positions of the Ba^{2+} ions. Note that one member of each pair of Ba^{2+} ions shown in Fig. 2 is above the layer and the other is below it.

TABLE 4. Selected bond distances (A) and angles (degrees) in $Li₃Ba₂TaN₄$

Bond distances		Bond angles		
$Ta-N(1)$ $Ta-N(2)$	1.962(6) 1.942(7)	N-Ta-N av.	109.2(4) 66.2(2)	
$Li(1) - N(1)$ $Li(1) - N(2)$	2.21(2) 2.43(2)	$N(1)$ -Ba- $N(2)$	97.8(2) 127.7(2)	
$Li(2)-N(1)$ $Li(2) - N(2)$ 2x Li(2) – Li(2)	2.14(2) 2.03(2) 2.32(3) 2.874(7)	$N(1)$ -Li (1) -N (1) $N(1)$ -Li(1)- $N(2)$ av. $N(2)$ -Ba- $N(2)$ $N(2)$ -Li (1) -N (2)	91.8(9) 122.0(2) 130.9(1) 80.8(8)	
$Ba-N(1)$	2.800(6) 2.968(6)	$N(1)$ -Li(2)- $N(2)$	130.6(9) 117.7(8)	
$Ba-N(2)$	3.062(8) 2.881(7) 3.257(6)	$N(2)$ -Li(2)- $N(2)$ $Ta-N(1)-Li(1)$ $Ta-N(2)-Li(1)$	109.8(8) 80.1(5) 85.3(4)	
$Ta-Li(1)$	2.69(2) 2.99(2) 3.5502(6)	$Li(1) - N(2) - Li(2)$ $Li(2)-N(2)-Li(2)$	99.6(7) 80.7(7) 70.2(8)	
Ta-Ba	3.5406(7) 3.4502(6)	$Ta-N(1)-Li(2)$ $Li(1)-N(1)-Li(2)$	100.6(6) 142.9(7)	
$Li(1)$ -Ba	2.971(8) 3.36(2)	$Ta-N(2)-Li(2)$	146.6(6) 142.8(6)	
$Li(2)-Ba$	3.27(2) 3.05(2)	$Li(1)-Ta-Li(1)$ $Ta-Li(1)-Ta$	180.00(0) 180.00(0)	
$Li(1)-Li(2)$	2.93(2) 2.90(2) 4.055(1) 3.9672(8)	$N(1)$ -Ba- $N(1)$ $N(1)$ -Ba- $N(2)$	102.9(2) 161.6(2) 65.3(2) 106.0(2)	
Ba–Ba	4.484(1) 3.9672(8)	$N(1)$ -Ba- $N(1)$	70.4(2) 78.0(2)	
	3.9684(10)	$N(1)$ -Ba- $N(2)$	74.7(2) 140.5(2) 84.1(2)	
		$N(2)$ -Ba- $N(2)$	94.0(2) 123.9(2)	

Each Ba atom has three nearest $N(1)$ and three nearest N(2) neighbors whose distances range from 2.800(6) to $3.257(6)$ Å (Table 4), values comparable to those

• Ta \circ Ba \circ N(1) \bullet N(2) \circ Li(1) \bullet Li(2)

Fig. 2. A view perpendicular to the *bc* plane which shows (a) how Ta and Li(1) atoms are tetrahedrally coordinated and connected to each other and (b) how these $Ta-Li(1)$ chains are linked together by Li(2) atoms in the *bc* plane.

Fig. 3. A view of the Ba atom distorted dodecahedral coordination.

in Ba₂TaN₃ where distances vary from 2.771 to 3.462 A. The eightfold Ba coordination is shown in Fig. 3. **Two sets of two N(1) and two N(2) atoms describe trapezoids that comprise the arcs of a distorted dodecahedron.**

It is interesting to compare the synthesis of Li₃Ba₂TaN₄ with that of Ba₂TaN₃. Both compounds **resulted from the reaction of a mixture of Li, Ba and** Ta metals with $N_2(g)$. A Li:Ba 2:1 molar ratio was used to prepare Li₃Ba₂TaN₄; a 1:1 molar ratio was used for the preparation of Ba₂TaN₃. The reaction **temperature may be a more important factor than composition in determining which compound forms.** $Li_3Ba_2TaN_4$ was prepared at 860 °C while Ba_2TaN_3 was **prepared at 1000 °C. At the more elevated temperature** Li₃N may escape from the Li-Ba-Ta-N system, favoring **formation of Ba₂TaN₃.**

Acknowledgments

XZC thanks Xiang Zhang for helping to plot the figures and for helpful discussions.

References

- 1 F.J. DiSalvo, *Science, 247* (1990) 649--655.
- 2 D.A. Vennos, M.E. Badding and F.J. DiSalvo, *Inorg. Chem., 29* (1990) 4059-4062.
- 3 D.A. Vennos and F.J. DiSalvo, *J. Solid State Chem., 98* (1992) 318-322.
- 4 P. H6hn, R. Kniep and A. Rabenau, *Z. Kristallogr., 196* (1991) 153-158.
- 5 A. Tennstedt, C. R6hr and R. Kniep, *Z. Naturforsch., 48B* (1993) 794-796.
- 6 D.S. Bern, C.P. Gibson and Hans-Conrad zur Loye, *Chem. Mater., 5* (1993) 397-398.
- 7 D.S. Bern and Hans-Conrad zur Loye, *J. Solid State Chem., 104* (1993) 467-469.
- 8 A. Gudat, P. H6hn, R. Kniep and A. Rabenau, *Z. Naturforsch., 46B* (1991) 566-572.
- 9 M.Y. Chern and F.J. DiSalvo, Z *Solid State Chem., 88* (1990) 528-533.
- 10 F.K-J. Helmlinger, P. H6hn and R. Kniep, *Z. Naturforsch., 48B* (1993) 1015-1018.
- 11 Ch. Wachsmann and H. Jacobs, Z *Alloys Comp., 190* (1992) 113-116.
- 12 (a) H. Jacobs and E.V. Pinkowski, J. *Less-Common Met., 146* (1989) 147-160; (b) P.E. Ranch and F.J. DiSalvo, J. *Solid State Chem., 100* (1992) 160-165.
- 13 U. Zachwieja and H. Jacobs, *Eur. Z Solid State lnorg. Chem., 28* (1991) 1055-1062.
- 14 A. Gudat, R. Kniep and J. Maier, Z *Alloys Comp., 186* (1992) 339-345 and references therein.
- 15 P. H6hn and R. Kniep, *Z. Naturforsch., 4711* (1992) 434-436.
- 16 P. H6hn, S. Haag, W. Milius and R. Kniep, *Angew. Chem. Int. Ed. Engl., 30* (1991) 831-832.
- 17 C.J. Gilmore, MITHRIL -- An integrated direct methods computer program, *J. Appl. Cryst., 17* (1984) 42-46.
- 18 P.T. Beurskens, DIRDIF: Direct methods for difference structures - an automatic procedure for phase extension and refinement of difference structure factors. *Technical Report 1984/1,* Crystallography Laboratory, Toernooiveld, 6525 Ed Nijmegen, Netherlands, 1984.
- 19 Function minimized: $\sum w (F_0^2 F_c^2)^2$, where $w = 4F_0^2/\sigma^2 (F_0^2)$.
- 20 D.T. Cromer and J.T. Waber, *International Tables for X-ray Crystallography,* Vol. IV, The Kynoch Press, Birmingham, England, 1974, Table 2.2 A.
- 21 D.T. Cromer, *International Tables for X-ray Crystallography,* Vol. IV, The Kynoch Press, Birmingham, England, 1974, Table 2.3.1.
- 22 *TEXSAN-TEXRAY Structure Analysis Package,* Molecular Structure Corporation, The Woodlands, TX, 1985.
- 23 D.A. Vennos and F.J. DiSalvo, *Acta Crystallogr., C48* (1992) 610-612.
- 24 A. Rabenau and H. Schulz, Z *Less-Common Met., 50* (1976) 155-159.
- 25 R.X. Fischer and E. Tillmanns, *Acta Crystallogr., C44* (1988) 775-776.